
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Introduction

Chapter 1

Welcome to MMME3085 Computer Engineering and Mechatronics!

▪ Course tutors:

▪ Course convener + Mechatronics: Abdelkhalick Mohammad

▪ Computer Engineering: Louise Brown

▪ Lab Sessions: Surojit Sen

▪ Computer Engineering lectures: Chemistry C15 Monday 1-3pm

▪ Mechatronics lectures: Psychology A1 Thursday 9-11am

▪ Computer labs: Coates C19 Tuesday 11am – 1pm

▪ Labs: AMB C09/10 Wednesday and Friday (see timetable for dates and times)

Record

Outline of the Module (1)

Week Assessment Programming Mechatronics

w/c ↓ University Teaching Lecture Lab Lecture Seminar Lab-1 Lab-2 Lab-5 Lab-6

Room → Chemistry C15 Coates C19 Psychology A1 Psychology A1 JC AMB C09/10

Time → Mon 13-15 Tues 11-13 Thurs 9-11 Fri 13-14 Wed 9-11 Wed 11-13 Fri 14-16 Fri 16-18

25-Sep 1 No teaching

02-Oct

2 1
Design Principles

C part 1: VSCode and Hello
World

Getting started with
C

Laying the
Foundations

Laying the
Foundations

09-Oct

3 2
Lab 1 programming

intro (5%)

C part 2: Operators,
printf/scanf and

conditional statements
C part 1 & 2

Comp architecture;
digital signals

(parallel); digital i/o;

Comp architecture;
digital signals

(parallel); digital i/o;

Collect kit
(group-3)

Collect kit
(group-4)

16-Oct

4 3
C part 3: Loops, arrays and

functions
C part 2

Counter-timers;
digital signals: serial

protocols

Counter-timers;
digital signals: serial

protocols

23-Oct

5 4
Lab 1 programming

submission Thurs 27 Oct
(5%)

C part 4: Memory and
pointers

C part 3
Sequences, state

tables, finite state
machines

Sequences, state
tables, finite state

machines

30-Oct

6 5
C part 5: functions using

pointers
C part 4

Analog signals, data
acquisition: aliasing,

grounding

Analog signals, data
acquisition: aliasing,

grounding

06-Nov

7 6
Software project
prep intro (5%)

C part 6: structures;
projects

C part 5
Data conversion
including PWM;

sensors

Data conversion
including PWM;

sensors

Lab-1
(group-1)

Lab-1
(group-2)

Lab-1
(group-3)

Lab-1
(group-4)

13-Nov

8 7
Lab 1 comprehension
quiz Thurs 16th Nov

(7.5%)

C part 7: numbers, enums
and conditional

compilation
C part 7; project

Motion Control:
Servo Motors,

closing the loop

Motion Control:
Servo Motors,

closing the loop

Outline of the Module (2)

20-Nov

9 8
Software project prep
submission Tues 21st

Nov (5%)

Command line
arguments and code

optimisation
C part 8; project

Stepper motors;
drivers;

Bresenham and
ramping

Stepper motors;
drivers;

Bresenham and
ramping

27-Nov

10 9 Software best practice Project

Stepper motor
dynamics.
Solenoids,

pneumatics,
hydraulics.

Stepper motor
dynamics.
Solenoids,

pneumatics,
hydraulics.

Lab-2
(group-1)

Lab-2
(group-2)

Lab-2
(group-3)

Lab-2
(group-4)

04-Dec

11 10
Lab 2 comprehension

quiz Thurs 7th Dec
(7.5%)

Project
Interrupts and

real-time issues;
FPGAs

Interrupts and
real-time issues;

FPGAs

Robot Testing
(15 min slots)

Robot Testing
(15 min slots)

Robot Testing
(15 min slots)

Robot Testing
(15 min slots)

11-Dec

12 11
Software project

submission Thurs 14th
Dec (20%)

Consolidation and
revision

Project
Consolidation and

revision
Consolidation and

revision
Robot Testing
(15 min slots)

Robot Testing
(15 min slots)

18-Dec 13

25-Dec 14

01-Jan 15

08-Jan 16

15-Jan 17 Exam 55%

22-Jan 18 Exam 55%

Outline of the Module (3)

▪ Lecture notes
• Notes are in the form of a mini book on C (so no book to buy !) available on Moodle

• You might also like to review some of the excellent on-line courses
• http://www.tutorialspoint.com/cprogramming

 Lab exercises

• Exercises corresponding to the chapters in the book (use the computer labs to tackle these
with help on hand!)

 Sample code
• Available on GitHub https://github.com/louisepb/VSMechatronics

• Folders starting ‘CL’ give code used during the lectures

• Folders starting ‘C’ give code used in the book and computer lab exercises

http://www.tutorialspoint.com/cprogramming
https://github.com/louisepb/VSMechatronics

Books

▪ If you do wish to get a book for the course there are a few ones you might like to
consider

▪ Paul Deitel and Harvey Deitel, C How to Program, 8th Edition, Global Edition, Pearson Education Ltd.:

London, 2016, ISBN 13: 978-1-292-11097-4.

▪ C Pocket Reference; Peter Prinz, Ulla Kirch-Prinz;ISBN: 9780596004361 Publisher: O'Reilly Media, Inc,

▪ C Programming in Easy Steps; Mike McGrath; ISBN: 9781840783636

▪ C for Dummies (v.1); Dan Gookin; ISBN: 9781878058782

▪ However

▪ A book is not essential and I would strongly recommend that you browse the many books on C available
and choose one that suits you

▪ The work we will be covering is ‘basic’ C and will be covered in any good book on the subject

Why study programming?

▪A few reasons
▪ Pass the module

▪ Complete the project

▪ Be able to do modules in later years

▪ The above are true
▪ But are not really persuasive arguments

▪Remember:
▪ We are training you to become highly employable engineers

But why does an engineer need this?

▪Many of the systems designed contain
embedded microprocessors/control
systems

▪ It is not computer programmers that
develop the code
▪ It is often the engineers that do this as they best

know the systems!

▪ We can relate code to the processor and even the
hardware on which it runs

SpaceX Falcon 9 (2021)

Examples

▪Examples of this are past students who work on & develop the code
for:

▪ Control systems for Airbus/Boeing

▪ Next generation power generators for Rolls-Royce

▪ Power convertors for renewable energy systems

▪ Map the interaction of EM radiation with people/planes/equipment etc.

Before we move on…

▪ This is both a PRACTICAL PROGRAMMING course

▪ It will teach you the basics (hopefully well!)

There is syntax to learn (VSCode helps here)

Concepts such as loops/decisions

▪ You will then have the building blocks to write even more ‘complex’ code

▪ It is a skill that develops with practice – and you will get plenty (in the associated labs &
the project module)

▪ And a SOFTWARE ENGINEERING course

▪ We look at how to solve problems and design robust code

▪ The KEY thing is to learn to ‘think’ about the code before writing it – in the same way one
would ‘design’ a house before building it

▪ We look at what code is – regardless of the language being used

When developing code

▪We have a choice of
▪ Machine Code

▪ The ‘language’ of the processor.

▪ When ‘crafted’ can be better optimized than any compiler

▪ Can be VERY time consuming to develop – often a highly specialised skill

▪ Code is (generally) processor dependent and so not ‘portable’

▪ High Level Languages, e.g. APL ,Pascal, C, C++, ADA, Fortran, Algol, COBOL, Python

▪ Each suited to different tasks

▪ All essentially the same,

Syntax & keywords of the language that differentiates them

▪ Code is ‘portable’

The compiler sorts things for us

Compilation Vs Interpretation

We also have the option (language specific) of

▪ Interpreted
▪ Line decoded & interpreted at run time -SLOW !

▪ Program errors often only found at run time

▪ Now coming back into use (web based languages such as ASP & PHP)

▪Compilation
▪ Program Analysed -> Object code

▪ Linking Stage -> Executable

The ‘Tools’ of the trade

Creating flowcharts

▪To design our code
• diagrams.net

• This is a free online tool that allows for the creation of simple
(or complex) diagrams

•https://app.diagrams.net/

• Or
• Pen & Paper ☺

• (Not for project submissions)

https://app.diagrams.net/

Version control

▪ GIT: To keep our code ‘safe’

▪A free version control system

▪ It allows us to keep version of the code so we can ‘go back’

▪We can ‘branch’ code to try things

▪Share code with others who can then ‘check in’ code when they
have finished with it

▪ https://git-scm.com/downloads

https://git-scm.com/downloads

Does this look familiar?

CodeFolder:
 TestCode.m
 TestCode_data_set1.m
 TestCode_data_set1_v2.m
 TestCode_data_set1_v2_with_output.m

The ‘simple’ manual solution

If we were a single developer working on completely separate code projects we could
• Keep the code in its own folder

• Make regular backups (dated & in multiple locations)

• Have plenty of comments to highlight what changed and when

The ‘downside’
• This does however stop the use of common code (which does make things easier)

• It is difficult to see which files changed between backups (at best we can use the
date edited)

• We will be making copies of lots of files that have not changed

• We have to ‘remember’ to do backups

The better solution

Use version control, eg Git, Subversion or Mercurial

• Keeps track of code changes
• Provides backup if used in conjunction with a hosting service

such as GitHub (github.com) or Bitbucket (bitbucket.org)
• Git can be downloaded from https://git-scm.com/

• GIT [1]

• Git (/ɡɪt/[6]) is a version control system that is used for software development and other version control tasks. As
a distributed revision control system it is aimed at speed, data integrity and support for distributed, non-linear
workflows.[10] Git was created by Linus Torvalds in 2005 for development of the Linux kernel, with other kernel
developers contributing to its initial development.

• As with most other distributed version control systems, and unlike most client–server systems, every Git directory
on every computer is a full-fledged repository with complete history and full version-tracking capabilities,
independent of network access or a central server. Like the Linux kernel, Git is free software distributed under the
terms of the GNU General Public License version 2. [1] https://en.wikipedia.org/wiki/Git_(software)

https://git-scm.com/
https://en.wikipedia.org/wiki/Git_(software)

Local git workflow

1

2 3

4

5

6 7

8

9

10

T1 T2

Trunk

Branch

Tag

Discontinued
branch

• Distributed system – have own version of the repository on local computer
• Using a remote repository gives backup and easier sharing between

developers
• Integrated into some IDEs eg Visual Studio and Matlab
• Easy use of branches for experimental code development

Git workflow

• If you were using a command line, the basic commands to manage an existing
git repository are

• git pull Gets the latest version of the code
• git init Creates a new repository
• git add . Adds all changes to local git version (the ‘dot’ means

all)
• git add newfile.c Only add the file ‘newfile.c’ to the local git

version
• git commit –m “fixed a bug” Commit the code, adding a comment about the

changes made
• git push Upload the new version to the server

• Others would then do a ‘git pull’ and get the new version (being prompted for
conflicts as appropriate)

Designing Code

Chapter 2

But before we do any coding

▪We need to ‘design’ code

▪ In the same way an architect would design a building

▪ They gather the requirements

▪Consider the limitations, materials available, environment etc.

▪Design plans at the macro and micro scale

▪Others then ‘build’ and test against these plans

▪Coding is the same…

▪ It is just we use software engineers and software architects!

What is involved in creating software?

▪What are the things you need to consider to create a piece of
software and/or a software product?

▪What are the steps in the process?

▪ Add your ideas to the padlet:

https://padlet.com/louisebrown7/overview-of-a-software-

project-ttiklf86efk760zq

https://padlet.com/louisebrown7/overview-of-a-software-project-ttiklf86efk760zq
https://padlet.com/louisebrown7/overview-of-a-software-project-ttiklf86efk760zq

Overview of a software project

▪What’s involved in creating a piece
of software?

• Requirements gathering
• High level design
• Low level design
• Development
• Testing
• Deployment
• Maintenance

What is a Software Architect?

▪Software architects should design, develop, nurture, and maintain the
architecture of the software-intensive systems they are involved with.1

1Kruchten, P. (2008). "What do software architects really do?" Journal of Systems and Software 81(12):

2413-2416.

https://www.sciencedirect.com/science/article/pii/S0164121208002057

Software Architect or Software Engineer?

• Software architecture shows the system’s structure and hides the
implementation details, focusing on how the system components
interact with one another.

• Software design concentrates on the system’s implementation,
often delving into significant detail.

• Software design centres on the selection of algorithms and data
structures, as well as the implementation details of every single
component2

2 https://medium.com/@concisesoftware/whats-the-difference-between-software-

architecture-and-design-b705c2584631

https://medium.com/@concisesoftware/whats-the-difference-between-software-architecture-and-design-b705c2584631
https://medium.com/@concisesoftware/whats-the-difference-between-software-architecture-and-design-b705c2584631
https://medium.com/@concisesoftware/whats-the-difference-between-software-architecture-and-design-b705c2584631

Understand the problem!

In short…

Software architects and engineers

• Look at the problem to be solved (often visiting and talking to people) and

so gather the requirements

• Consider the limitations, environment etc.

• Designs how the code will function

• Provides test criteria to confirm correct operation (and ‘error’ cases)

This is often the ‘hardest’ and most time consuming part

• But the one that must be done correctly

• Programmers will work from the plans and develop code accordingly

• They will not question ‘why’, they just ‘do’

• You cannot blame the programmer if the design is wrong

In the same way you cannot blame a builder if the building plans are

incorrect

Once the design is done

Programmers

▪ Take the ‘plans’ and, using their skills, write the code

Testers

▪ Take the code and test it both at function and system level

You will learn to be all of these

Software Engineer

• Developing the ‘flow’ of the code and developing test scenarios to

check it works correctly

Programmer

• Take the ‘plans’ and, using YOUR skills, write the required code

(in the appropriate language)

• Document & maintain the code

Tester

• Take the code you have developed and test it both at function and

system level

The ‘hard’ part

Learning how to plan the code

Computers (and programmers) take things literally

A woman asks her husband, a programmer, to go shopping.

Wife: “Dear, please, go to the nearby grocery store to buy some bread. Also, if they have eggs, buy 6.”
Husband: “O.K.”

Twenty minutes later the husband comes back bringing 6 loaves of bread. His wife is flabbergasted.

Wife: “Dear, why on earth did you buy 6 loaves of bread?”

Husband: “They had eggs.”

The ‘easy’ part

Coding

• Though at first you may not believe me, is easy ☺

• It is writing a series of statements that will be

executed exactly as you have written them

The ‘evil’ part

Testing

▪ Testing is essential!

▪At ‘functional’ level (think here of components of a system)

We want to ensure the individual bits work before we start to
assemble them

▪At system level (the final working project)

Does the system work as expected

▪We test

▪As we write

▪When we have finished

▪After any changes are made

What you learn is portable

Once you can program in one language it is easy to learn more

▪ In fact, once you know two/three you can generally fix code in a
language you do not know!

This is because once you learn how to think like a programmer

▪All you need is the syntax for the new language

And by way of proof…

▪ In all programming languages there exists

▪ If

▪ If / else

▪ If / else if / else

Pictorially (a flow chart)

If

Pictorially (a flow chart) (2)

If

Else if

Pictorially (a flow chart) (3)

If

Else if

Else

In code form: if / else & if / else if / else

Source:
http://rigaux.org/language-study/syntax-across-languages.html
.html

if c then b1 else b2 CoffeeScript, F#, Haskell, merd, OCaml, SML

if c then b1 else b2 end Eiffel, Lua, Ruby

if c then b1 elseif c2 then b2 else b3 end Eiffel, Oz

if (c) then b1 elseif (c2) then b2 else b3 end Dylan

IF c THEN b1 ELSIF c2 THEN b2 ELSE b3 END Modula-3

If c Then b1 ElseIf c2 Then b2 Else b3 End If Modula-2

if (c) b1 else b2 Awk, B, C, C#, C++, Java, JavaScript, Pike, YCP

if c b1 elsif c2 b2 b3 Tcl

if c then b1 elseif c2 then b2 else b3 Tcl

if c then begin b1 end else begin b2 end Pascal

if c b1 eif c2 b2 else b3 Pliant

if c then b1 elif c2 then b2 else b3 end if Maple

if c; then b1; elif c2; then b2; else b3; fi BourneShell

if c; b1; else b2; end FishShell

if c1, b1, elseif c2, b2, else, b3, end Matlab

http://rigaux.org/language-study/syntax-across-languages.html

But the one key thing to remember

• Computers are NOT intelligent

• They will do exactly what you tell them to

• The ‘trick’ is to:

• Be specific in what you want the code to do

• Make NO assumptions

Consider a practical case

▪ Consider this (based on an old, no longer used, progression rule)

▪ A student has the following marks

Average = 65.1%

▪ Rule:
▪ If a student has an average of 68% or 69% and half their modules have a mark over 70% or

their project mark is over 70% they get a 1st

▪ Question:
▪ Does the student get a 1st class degree?

Module1 Module

2

Module

3

Module

4

Module

5

Module

6

Module

7

Project

50% 70% 65% 68% 63% 55% 70% 80%

In a more memorable format

▪The following is an example of doing exactly what you are
told to

As a good piece of code would!

So let’s design some code…

▪ The simplest method is a flowchart (which draw.io is great for!)

▪ There are a number of symbols however the most commonly used ones are
as below

https://www.smartdraw.com/flowchart/flowchart-symbols.htm

This simple program decides if it is
time to launch a rocket...

https://www.smartdraw.com/flowchart/flowchart-symbols.htm

Flowcharts

We can apply the process to many tasks:

Sketch out a flowchart to make a cup of tea

Flowchart for making tea

▪ This is a very simple example however
it is missing a large number of steps!

▪ What are they?

http://whyhavebusinessanalysis.wordpress.com/2011/05/03/i-just-love-business-process-modelling-bpm/

http://whyhavebusinessanalysis.wordpress.com/2011/05/03/i-just-love-business-process-modelling-bpm/

Exercise

▪ Sketch out a comprehensive flowchart for a program to solve a quadratic
equations where the roots are not complex

▪ Develop some test values (good and bad cases)

▪ Assume here users are idiots (This is always a good plan!)

▪ Use a table to set out test data

▪ Make sure your test data covers all routes through the flowchart

▪ You will be drawing this up in draw.io in the computer lab session

Function Test Case Test Data Expected Output

Lab Work for this Week

Taking a problem

▪ Analysing the problem

▪ Generating the flowcharts (in draw.io)

▪ Developing test data

▪ Both pass and fail cases

Hello World

Chapter 3

Overview

▪Getting Started

▪Visual Studio Code, VSCode – Programming environment

▪What it is

▪Why do we use it?

▪ Looking at code – the most basic program

▪ The structure of a program

▪ The basic syntax of C

The programming environment and compiler we will use

We use VSCode

• This is actually a ‘container’ for programming in various languages

• It is available on the Engineering Virtual Desktop

• Quick and easy to get started with

• Free!

It can be downloaded from

• https://code.visualstudio.com/download

• You will need to install extensions for C programming

You may need to install the gcc compiler

• Windows: Use MSYS2 https://www.msys2.org/ to install MinGW-x64
• Linux should already have gcc installed
• MacOS should have CLang installed

▪ Full instructions for installation are given in Appendix A of the course book and in the
‘Setting up VSCode for Compiling C Code’ document on Moodle

https://code.visualstudio.com/download
https://www.msys2.org/

Let’s get coding!

▪ All C programs (in fact code in almost all languages) consist of the same basic
parts

▪ Pre-processor commands

▪ Functions

▪ Variables

▪ Statements and expressions

▪ Comments

▪ Let’s look at an example – the classic ‘Hello World’ program

The Famous “Hello World” Program (1)

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.
 http://helloworldcollection.de/

These lines instruct the compiler to ‘include’ the contents of
the files ‘stdio.h’ and ‘stdlib.h’

This is done by the compiler before the code is compiled

http://helloworldcollection.de/

The Famous “Hello World” Program (2)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

All C code starts execution at the line

 int main()

(regardless of where it is in your code)

http://helloworldcollection.de/

The Famous “Hello World” Program (3)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Brackets {}
are used to
block lines
of code

http://helloworldcollection.de/

The Famous “Hello World” Program (4)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Comments are vital to good coding – they
allow information to be included within code

Between /* and */
or following //

http://helloworldcollection.de/

The Famous “Hello World” Program (5)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

printf is a function within C that allows us to
write text to the display.

In C, the parameters for a function are
placed within brackets () , multiple
parameters are comma separated.

http://helloworldcollection.de/

The Famous “Hello World” Program (6)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

Each statement in C is terminated with a
semicolon ;

http://helloworldcollection.de/

The Famous “Hello World” Program (7)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

The last statement

 return 0;

Terminates the main() function – so ending
the program

http://helloworldcollection.de/

The Famous “Hello World” Program (8)

Note: Writing ‘Hello World’ is a tradition in programming – there are whole web sites
dedicated to it, e.g.

 http://helloworldcollection.de/

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

/* My first program in C */

printf("Hello World \n");

return 0; // Return from prog

}

 Time to see the code in action!

C3\hello_world.c

http://helloworldcollection.de/

Now it’s your turn

Try this before the computer lab on Tuesday

• Make sure you can access VSCode

• Create a Hello World project

• Build and run the program

• Locate the project files on your computer and see what files have
been created by the build

The Very Basics of C

Chapter 4

The syntax of C

▪As with learning any language (programming or spoken), there is the
grammar and syntax to get to grips with

▪ Initially you may find this (somewhat) infuriating as a simple typing
mistake can seem to hold you up

▪One thing you will need to watch out for is when to (and importantly,
when NOT TO) use semicolons

The syntax of C (2)

▪ Lines of code are terminated with a semicolon

▪A semicolon on its own is a valid null statement
▪ This can cause problems in certain circumstances)

▪ Indentation
▪ helps

▪ Readability

And

Must

• Be

• Used!

▪Blocks of code go in curly brackets/braces {..}

Brackets {}, There are two styles…

Comments!

▪Single lines of comments can be prefixed
▪ //
▪E.g. // This is a comment

▪Block comments go between
▪ /* and */
▪ /* Comments are

ESSENTIAL */

▪A lack of comments will cost you marks!

Identifiers: Naming things…

▪An identifier is the term we use for something in code that WE define
(a ‘user-defined’ item).

▪ The rules on naming are
▪ They can only start with a letter A to Z, a to z or an underscore ‘_’, optionally

followed additional letters, underscores or digits

▪ You CANNOT use punctuation characters (@, $, % etc.)

▪ Some valid examples would be
▪ abc

▪ _temp

▪ i

▪ myname

▪ Note that C is a case sensitive language so

▪ Age and age are two different identifiers in C

Write for Humans

▪ Make names meaningful and distinctive

• Avoid hx, hy – use HeightX and HeightY

• Avoid names that are very similar eg results and results2

White spaces costs nothing and makes code much easier to read

Code should be readable!

Types of Variables

▪When programming we often need to store values.

▪ To do this we define variables (using an identifier that ideally indicates
what is being stored)

▪ There are many types of variables in C, for now we will consider the
most basic type – those that hold numerical values

▪We then consider the type of number they will hold

▪ Integer (whole numbers)

▪ Floating point (those numbers that may have a decimal part)

▪We also need to consider the size of number that will stored…

Integer types

There are many integer types. Below are a few
(arrows highlight the ones we will most often use)

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or

-2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or

0 to 4,294,967,295

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

Note: These are typical values, the storage size and range may differ on some systems,
we will learn how to get these for systems in later lectures

Floating point numbers

Type Storage

size

Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long

double

10 byte 3.4E-4932 to

1.1E+4932

19 decimal places

Note: These are typical values, the storage size and range may differ on some systems,
we will learn how to get these for systems in later lectures

Use of Variables

To create a variable we specify the type then

the variable(s) to be created

▪ To create multiple variable of the same type separate them with

commas

▪ Note: If no initial is given the value in the variable is UNDEFINED

▪ Do not make the mistake of assuming it will be zero!

▪ It is not a bad idea to give every variable a default value

int a, b, c, sum; /* Define integers – no initial value*/

int d = 0; /* Define & set initial value */

Take note!

Use of Variables (2)

Also
▪Ensure you remain within range
▪C won’t check this for you, but may give warnings

▪Use informative variable names

▪Be very careful when ‘number crunching’
▪Common mistake

a=3, b=5 : if a and b are both integers a/b = 0!
This can then give a ‘divide by zero’ error later

Use of Variables (3)

▪ Likewise be careful of mixing variable types

▪When mixing integers/floats be careful as the result may not
always be of the type you expect

▪Basically

▪Consider the problem and then from this determine the type of
variable to use!

▪And, if required/appropriate, make use of typecasting

Typecasting: A solution to the previous points!

Consider

▪ Variables A & B are integers with a=10, B=3

▪ Variable C is a float

▪ For the calculation

▪ C = A / B

▪ We would expect the value in C to be 3.3333 however as A & B are integers the calculation is done
as integer mathematics (giving 3) which is then stored in C

▪ The fix is to ‘typecast’ a variable to another type by putting the ‘temporary’ type in brackets before
the variable – it is then treated as this type for the purposes of the calculation, assignment etc.

▪ So, to get the correct answer to the above calculation we typecast A & B as floats, as below

▪ C = (float)A / (float)B;

C4\wrong_answer.c C4\correct_answer.c

Mathematical Precedence

Order in which calculations are performed

▪ 1st Function calls, Brackets & operators

▪ 2nd Multiply, divide and remainder

▪ 3rd Addition and Subtraction

A simple mnemonic is

BODMAS

▪ Brackets, operators, divide, multiply, add, subtract

Mathematical Precedence (2)

E.g.

X * Y * Z + A / B - C / D

Can be written (and is calculated as)

(X * Y * Z) + (A / B) - (C / D)

The brackets are not strictly necessary, but their addition
makes the code easier to read

Output

Chapter 5

Displaying Variables (and text)

▪ It is all very well being able to define variables and use them within
code (e.g. for example calculations)

▪ It is also ‘handy’ to be able to display their values on the screen

▪ The programming term for getting/displaying information is Input &
Output

▪We will look at output now – as then we can write code that tells
us things (e.g. the result of a calculation)

▪ Input is covered in the lecture for chapter 7 of the course book

Displaying Variables (and text) (2)

◦ The ‘general’ function in C we use do display output is

printf
◦ It is a function that can take one or more parameters

◦ This is somewhat ‘unusual’ in programming in C where functions generally expect a
fixed number of parameters.

◦ There must be at least one parameter – the text to display

printf("Hello world!");

Parameter: The text to be displayed
contained in double quotation marks

Function: printf, used to
output to the display

Formatting Characters

▪ There are some formatting options for things that we cannot ‘type’ into
code (e.g. a ‘new line’)

▪ The two most common are

▪ \n Insert a new line

▪ \t Insert a TAB character

▪ There are more – take a look on-line!

▪ https://www.ibm.com/docs/en/rdfi/9.6.0?topic=set-escape-sequences

https://www.ibm.com/docs/en/rdfi/9.6.0?topic=set-escape-sequences

For displaying variables

▪ To display the contents of a variables using printf we use a
‘substitution’ approach

▪ The 1st parameter in the printf statement is still the text to display but
within this we use ‘place holders’

▪When the code is executed, these ‘place holders’ are substituted with
the values stored in variables

Displaying the contents of variables

Variable place holders – replaced (at run-time) with the contents of a
variable

▪ %d Used to display an int (you can also use %i)

▪ %f Used to display a floating number

▪ %c Used to display a single character

▪ %s Used to display a string (of characters)

▪ %x Used to display in hexadecimal

▪ %#x Used to display in hexadecimal with 0x in front of number

IMPORTANT!

For things to work correctly
▪ We MUST provide a variable for each place holder
▪ The variable and place-holder type MUST match!

i.e.
▪ To display an integer we MUST use %d (or %i)

This is best shown via an example

An example of formatting and place holders

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int a,b,c,sum; /* Define variables */

a = 1; /* Assign values */

b = 2;

c = 3;

sum = a + b + c ; /* Calculate sum & Display */

printf ("\nThe sum of %d + %d + %d is %d \n", a, b, c, sum);

return 0; /* Return from prog */

}

LC5\printf_example.c

Tidying up output

We can ‘enhance’ the variable format string (%d, %f) to improve how we
display numbers

Things that can be specified are
▪ The number of characters to used to display a value
▪ Where whitespace will be added

▪ Before / after the text to be outputted

Note:
▪ For numbers if more characters are required than that ‘stated’ in the

formatting string, the value is over-ridden
▪ For strings the output is truncated

Tidying up output (2)

▪For integers we can specify the number of characters to use
(space will be used to pad)

▪ %6d Print as an integer with a width of at least 6 wide, whitespace added at
the ‘front’

▪ %-6d Print as an integer with a width of at least 6 wide, whitespace
added at the ‘end’

▪Reminder:
▪ If more characters are actually needed (e.g. we specify 4 but the

number to display is 123456 the format will be automatically
overridden)

Tidying up output (3)

For floats we can specify the number of characters to use in total for the number as
a whole (can be omitted) and the precision

▪ %4f Print as a floating point with a width of, at least, characters 4

 wide (precision not specified)

▪ %.4f Print as a floating point with a precision of four characters after

 the decimal point

▪ %3.2f Print as a floating point at least 3 wide and a precision of 2DP

C5\formatting_numbers.c

There are a few others

▪Some further examples

%e
64-bit floating-point number (double), printed in scientific notation using

a lowercase e to introduce the exponent.

%E
64-bit floating-point number (double), printed in scientific notation using

an uppercase E to introduce the exponent.

%x
Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the

digits 0–9 and lowercase a–f.

%X
Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the

digits 0–9 and uppercase A–F.

A quick on-line search for formatting options in will give you a very long list of options!

Now we know a bit…

As we can now

▪ Define variables,

▪ Assign them values and

▪ Display them on the screen

We can start with some real coding!

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Chapter 1
	Slide 3: Welcome to MMME3085 Computer Engineering and Mechatronics!
	Slide 4: Outline of the Module (1)
	Slide 5: Outline of the Module (2)
	Slide 6: Outline of the Module (3)
	Slide 7: Books
	Slide 8: Why study programming?
	Slide 9: But why does an engineer need this?
	Slide 10: Examples
	Slide 11: Before we move on…
	Slide 12: When developing code
	Slide 13: Compilation Vs Interpretation
	Slide 14: The ‘Tools’ of the trade
	Slide 15: Creating flowcharts
	Slide 16: Version control
	Slide 17: Does this look familiar?
	Slide 18: The ‘simple’ manual solution
	Slide 19: The better solution
	Slide 20: Local git workflow
	Slide 21: Git workflow
	Slide 22
	Slide 23: Chapter 2
	Slide 24: But before we do any coding
	Slide 25: What is involved in creating software?
	Slide 26: Overview of a software project
	Slide 27: What is a Software Architect?
	Slide 28: Software Architect or Software Engineer?
	Slide 29: Understand the problem!
	Slide 30: In short…
	Slide 31: Once the design is done
	Slide 32: You will learn to be all of these
	Slide 33: The ‘hard’ part
	Slide 34: The ‘easy’ part
	Slide 35: The ‘evil’ part
	Slide 36: What you learn is portable
	Slide 37: Pictorially (a flow chart)
	Slide 38: Pictorially (a flow chart) (2)
	Slide 39: Pictorially (a flow chart) (3)
	Slide 40: In code form: if / else & if / else if / else
	Slide 41: But the one key thing to remember
	Slide 42: Consider a practical case
	Slide 43: In a more memorable format
	Slide 44
	Slide 45: So let’s design some code…
	Slide 46: Flowcharts
	Slide 47: Flowchart for making tea
	Slide 48
	Slide 49: Exercise
	Slide 50: Lab Work for this Week
	Slide 51: Chapter 3
	Slide 52: Overview
	Slide 53: The programming environment and compiler we will use
	Slide 54: Let’s get coding!
	Slide 55: The Famous “Hello World” Program (1)
	Slide 56: The Famous “Hello World” Program (2)
	Slide 57: The Famous “Hello World” Program (3)
	Slide 58: The Famous “Hello World” Program (4)
	Slide 59: The Famous “Hello World” Program (5)
	Slide 60: The Famous “Hello World” Program (6)
	Slide 61: The Famous “Hello World” Program (7)
	Slide 62: The Famous “Hello World” Program (8)
	Slide 63: Now it’s your turn
	Slide 64: Chapter 4
	Slide 65: The syntax of C
	Slide 66: The syntax of C (2)
	Slide 67: Brackets {}, There are two styles…
	Slide 68: Comments!
	Slide 69: Identifiers: Naming things…
	Slide 70: Write for Humans
	Slide 71: Types of Variables
	Slide 72: Integer types
	Slide 73: Floating point numbers
	Slide 74: Use of Variables
	Slide 75: Use of Variables (2)
	Slide 76: Use of Variables (3)
	Slide 77: Typecasting: A solution to the previous points!
	Slide 78: Mathematical Precedence
	Slide 79: Mathematical Precedence (2)
	Slide 80: Chapter 5
	Slide 81: Displaying Variables (and text)
	Slide 82: Displaying Variables (and text) (2)
	Slide 83: Formatting Characters
	Slide 84: For displaying variables
	Slide 85: Displaying the contents of variables
	Slide 86: IMPORTANT!
	Slide 87: An example of formatting and place holders
	Slide 88: Tidying up output
	Slide 89: Tidying up output (2)
	Slide 90: Tidying up output (3)
	Slide 91: There are a few others
	Slide 92: Now we know a bit…

